To improve localization and pose precision of visual-inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuning. During back-end optimization of the viSLAM process, the unit-weight root-mean-square error (RMSE) of the visual reprojection and IMU preintegration in each optimization is computed to construct a covariance tuning function, producing a new covariance matrix. This is used to perform another round of nonlinear optimization, effectively improving pose and localization precision without closed-loop detection. In the validation experiment, our algorithm outperformed the OKVIS, R-VIO, and VINS-Mono open-source viSLAM frameworks in pose and localization precision on the EuRoc dataset, at all difficulty levels.
A Resilient Method for Visual-Inertial Fusion Based on Covariance Tuning.
一种基于协方差调整的视觉惯性融合弹性方法
阅读:12
作者:Li Kailin, Li Jiansheng, Wang Ancheng, Luo Haolong, Li Xueqiang, Yang Zidi
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Dec 14; 22(24):9836 |
| doi: | 10.3390/s22249836 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
