MOTIVATION: Cellular signal transduction involves spatial-temporal dynamics and often stochastic effects due to the low particle abundance of some molecular species. Others can, however, be of high abundances. Such a system can be simulated either with the spatial Gillespie/Stochastic Simulation Algorithm (SSA) or Brownian/Smoluchowski dynamics if space and stochasticity are important. To combine the accuracy of particle-based methods with the superior performance of the SSA, we suggest a hybrid simulation. RESULTS: The proposed simulation allows an interactive or automated switching for regions or species of interest in the cell. Especially we see an application if for instance receptor clustering at the membrane is modeled in detail and the transport through the cytoplasm is included as well. The results show the increase in performance of the overall simulation, and the limits of the approach if crowding is included. Future work will include the development of a GUI to improve control of the simulation. AVAILABILITY OF IMPLEMENTATION: www.bison.ethz.ch/research/spatial_simulations. CONTACT: mklann@ee.ethz.ch or koeppl@ethz.ch Supplementary/Information: Supplementary data are available at Bioinformatics online.
Hybrid spatial Gillespie and particle tracking simulation.
阅读:5
作者:Klann Michael, Ganguly Arnab, Koeppl Heinz
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2012 | 起止号: | 2012 Sep 15; 28(18):i549-i555 |
| doi: | 10.1093/bioinformatics/bts384 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
