Machine learning based study for the classification of Type 2 diabetes mellitus subtypes.

基于机器学习的2型糖尿病亚型分类研究

阅读:6
作者:Ordoñez-Guillen Nelson E, Gonzalez-Compean Jose Luis, Lopez-Arevalo Ivan, Contreras-Murillo Miguel, Aldana-Bobadilla Edwin
PURPOSE: Data-driven diabetes research has increased its interest in exploring the heterogeneity of the disease, aiming to support in the development of more specific prognoses and treatments within the so-called precision medicine. Recently, one of these studies found five diabetes subgroups with varying risks of complications and treatment responses. Here, we tackle the development and assessment of different models for classifying Type 2 Diabetes (T2DM) subtypes through machine learning approaches, with the aim of providing a performance comparison and new insights on the matter. METHODS: We developed a three-stage methodology starting with the preprocessing of public databases NHANES (USA) and ENSANUT (Mexico) to construct a dataset with N = 10,077 adult diabetes patient records. We used N = 2,768 records for training/validation of models and left the remaining (N = 7,309) for testing. In the second stage, groups of observations -each one representing a T2DM subtype- were identified. We tested different clustering techniques and strategies and validated them by using internal and external clustering indices; obtaining two annotated datasets Dset A and Dset B. In the third stage, we developed different classification models assaying four algorithms, seven input-data schemes, and two validation settings on each annotated dataset. We also tested the obtained models using a majority-vote approach for classifying unseen patient records in the hold-out dataset. RESULTS: From the independently obtained bootstrap validation for Dset A and Dset B, mean accuracies across all seven data schemes were [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]), respectively. Best accuracies were [Formula: see text] and [Formula: see text]. Both validation setting results were consistent. For the hold-out dataset, results were consonant with most of those obtained in the literature in terms of class proportions. CONCLUSION: The development of machine learning systems for the classification of diabetes subtypes constitutes an important task to support physicians for fast and timely decision-making. We expect to deploy this methodology in a data analysis platform to conduct studies for identifying T2DM subtypes in patient records from hospitals.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。