Comparative transcriptomic analysis of developing cotton cotyledons and embryo axis.

阅读:4
作者:Jiao Xiaoming, Zhao Xiaochun, Zhou Xue-Rong, Green Allan G, Fan Yunliu, Wang Lei, Singh Surinder P, Liu Qing
BACKGROUND: As a by product of higher value cotton fibre, cotton seed has been increasingly recognised to have excellent potential as a source of additional food, feed, biofuel stock and even a renewable platform for the production of many diverse biological molecules for agriculture and industrial enterprises. The large size difference between cotyledon and embryo axis that make up a cotton seed results in the under-representation of embryo axis gene transcript levels in whole seed embryo samples. Therefore, the determination of gene transcript levels in the cotyledons and embryo axes separately should lead to a better understanding of metabolism in these two developmentally diverse tissues. RESULTS: A comparative study of transcriptome changes between cotton developing cotyledon and embryo axis has been carried out. 17,384 unigenes (20.74% of all the unigenes) were differentially expressed in the two adjacent embryo tissues, and among them, 7,727 unigenes (44.45%) were down-regulated and 9,657 unigenes (55.55%) were up-regulated in cotyledon. CONCLUSIONS: Our study has provided a comprehensive dataset that documents the dynamics of the transcriptome at the mid-maturity of cotton seed development and in discrete seed tissues, including embryo axis and cotyledon tissues. The results showed that cotton seed is subject to many transcriptome variations in these two tissue types and the differential gene expression between cotton embryo axis and cotyledon uncovered in our study should provide an important starting point for understanding how gene activity is coordinated during seed development to make a seed. Further, the identification of genes involved in rapid metabolite accumulation stage of seed development will extend our understanding of the complex molecular and cellular events in these developmental processes and provide a foundation for future studies on the metabolism, embryo differentiation of cotton and other dicot oilseed crops.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。