A Petri Net and LSTM Hybrid Approach for Intrusion Detection Systems in Enterprise Networks.

阅读:8
作者:Volpe Gaetano, Fiore Marco, la Grasta Annabella, Albano Francesca, Stefanizzi Sergio, Mongiello Marina, Mangini Agostino Marcello
Intrusion Detection Systems (IDSs) are a crucial component of modern corporate firewalls. The ability of IDS to identify malicious traffic is a powerful tool to prevent potential attacks and keep a corporate network secure. In this context, Machine Learning (ML)-based methods have proven to be very effective for attack identification. However, traditional approaches are not always applicable in a real-time environment as they do not integrate concrete traffic management after a malicious packet pattern has been identified. In this paper, a novel combined approach to both identify and discard potential malicious traffic in a real-time fashion is proposed. In detail, a Long Short-Term Memory (LSTM) supervised artificial neural network model is provided in which consecutive packet groups are considered as they flow through the corporate network. Moreover, the whole IDS architecture is modeled by a Petri Net (PN) that either blocks or allows packet flow throughout the network based on the LSTM model output. The novel hybrid approach combining LSTM with Petri Nets achieves a 99.71% detection accuracy-a notable improvement over traditional LSTM-only methods, which averaged around 97%. The LSTM-Petri Net approach is an innovative solution combining machine learning with formal network modeling for enhanced threat detection, offering improved accuracy and real-time adaptability to meet the rapid security needs of virtual environments and CPS. Moreover, the approach emphasizes the innovative role of the Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) as a form of "virtual sensing technology" applied to advanced network security. An extensive case study with promising results is provided by training the model with the popular IDS 2018 dataset.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。