Connections between Various Disorders: Combination Pattern Mining Using Apriori Algorithm Based on Diagnosis Information from Electronic Medical Records.

阅读:3
作者:Ma He, Ding Jingjing, Liu Mei, Liu Ying
OBJECTIVE: Short-term or long-term connections between different diseases have not been fully acknowledged. This study was aimed at exploring the network association pattern between disorders that occurred in the same individual by using the association rule mining technique. METHODS: Raw data were extracted from the large-scale electronic medical record database of the affiliated hospital of Xuzhou Medical University. 1551732 pieces of diagnosis information from 144207 patients were collected from 2015 to 2020. Clinic diagnoses were categorized according to "International Classification of Diseases, 10th revision". The Apriori algorithm was used to explore the association patterns among those diagnoses. RESULTS: 12889 rules were generated after running the algorithm at first. After threshold filtering and manual examination, 110 disease combinations (support ≥ 0.001, confidence ≥ 60%, lift > 1) with strong association strength were obtained eventually. Association rules about the circulatory system and metabolic diseases accounted for a significant part of the results. CONCLUSION: This research elucidated the network associations between disorders from different body systems in the same individual and demonstrated the usefulness of the Apriori algorithm in comorbidity or multimorbidity studies. The mined combinations will be helpful in improving prevention strategies, early identification of high-risk populations, and reducing mortality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。