Melissa officinalis extract inhibits laser-induced choroidal neovascularization in a rat model

蜜蜂花提取物可抑制大鼠模型中激光诱导的脉络膜新生血管

阅读:6
作者:Eun Kyoung Lee, Young Joo Kim, Jin Young Kim, Hyun Beom Song, Hyeong Gon Yu

Conclusions

Systemic administration of M. officinalis extract suppressed laser-induced CNV formation in rats. Inhibition of VEGF and MMP-9 via anti-oxidative activity may underlie this effect.

Methods

Experimental CNV was induced by laser photocoagulation in Brown Norway rats. An active fraction of the Melissa leaf extract was orally administered (50 or 100 mg/kg/day) beginning 3 days before laser photocoagulation and ending 14 days after laser photocoagulation. Optical coherence tomography and fluorescein angiography were performed in vivo to evaluate the thickness and leakage of CNV. Choroidal flat mount and histological analysis were conducted to observe the CNV in vitro. Vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and MMP-9 expression were measured in retinal and choroidal-scleral lysates 7 days after laser injury. Moreover, the effect of M. officinalis extract on tertiary-butylhydroperoxide (t-BH)-induced VEGF secretion and mRNA levels of VEGF, MMP-2, and MMP-9 were evaluated in human retinal epithelial cells (ARPE-19) as well as in human umbilical vein endothelial cells (HUVECs).

Purpose

This study investigated the effect of Melissa officinalis extract on laser-induced choroidal neovascularization (CNV) in a rat model. The mechanism by which M. officinalis extract acted was also investigated.

Results

The CNV thickness in M. officinalis-treated rats was significantly lower than in vehicle-treated rats by histological analysis. The CNV thickness was 33.93±7.64 µm in the high-dose group (P<0.001), 44.09±12.01 µm in the low-dose group (P = 0.016), and 51.00±12.37 µm in the control group. The proportion of CNV lesions with clinically significant fluorescein leakage was 9.2% in rats treated with high-dose M. officinalis, which was significantly lower than in control rats (53.4%, P<0.001). The levels of VEGF, MMP-2, and MMP-9 were significantly lower in the high-dose group than in the control group. Meanwhile, M. officinalis extract suppressed t-BH-induced transcription of VEGF and MMP-9 in ARPE-19 cells and HUVECs. Conclusions: Systemic administration of M. officinalis extract suppressed laser-induced CNV formation in rats. Inhibition of VEGF and MMP-9 via anti-oxidative activity may underlie this effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。