Drugs targeting the ER-resident innate immune receptor Stimulator of Interferon Genes (STING) are in development for treatments of cancer and inflammatory diseases. Accurate determination of STING receptor levels in normal and disease tissue is an essential component of modeling pharmacology and drug-target disposition. Using metabolic labeling with deuterium oxide paired with high resolution mass spectrometry, we report the protein fractional synthesis rates and turnover of STING in wild-type (C57BL/6) and inflamed mice carrying the Trex1 D18N mutation (Trex1D18N) as a STING-dependent model of human Acardi-Goutiéres syndrome. Remarkably, STING protein half-life is tissue specific with the shortest half-life of 4 days in colon and lymph node and longest half-life of 24 days in skeletal muscle. Despite the relative increase in STING protein abundance in the inflamed Trex1D18N mouse, the overall kinetics of protein degradation and resynthesis was similar between Trex1D18N and WT mice. The extent of tissue specific interferon stimulated gene transcription, a hallmark of SLE linked pathophysiology, correlates with the extend of increased STING levels in Trex1D18N tissues and appears inversely proportional to the turnover rate of STING. Understanding STING's fractional protein synthesis rate and half-life provides a valuable component of quantitative modeling of drug pharmacology, dose frequency and targeting tissues of STING directed therapies.
Implications of tissue specific STING protein flux and abundance on inflammation and the development of targeted therapeutics.
阅读:6
作者:Angel Thomas E, Chen Zhuo, Moghieb Ahmed, Ng Sze-Ling, Beal Allison M, Capriotti Carol, Azzarano Leonard, Comroe Debra, Adam Michael, Moore Patrick, Hoang Bao, Blough Kelly, Kuziw Joanne, Ramanjulu Joshi M, Pesiridis G Scott
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Feb 25; 20(2):e0319216 |
| doi: | 10.1371/journal.pone.0319216 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
