Rolling bearings are important supporting components of large-scale electromechanical equipment. Once a fault occurs, it will cause economic losses, and serious accidents will affect personal safety. Therefore, research on rolling bearing fault diagnosis technology has important engineering practical significance. Feature extraction with high price density and fault identification are two keys to overcome in the field of fault diagnosis of rolling bearings. This study proposes a feature extraction method based on variational modal decomposition (VMD) and sample entropy and also designs an improved sequence minimization algorithm with optimal parameters to identify the fault. Firstly, a variational modal decomposition system based on vibration signals is designed, and the sample entropy of the components is extracted as the eigenvalue of the signal. Secondly, in order to improve the accuracy of fault diagnosis, the sequence minimum optimization algorithm optimized by the bat algorithm is used as the classifier. Certainly, the traditional bat algorithm (BA) and the sequence minimum optimization algorithm (SMO) are improved, respectively. Therefore, a fault diagnosis algorithm based on IBA-ISMO is obtained. Finally, the experimental verification is designed to prove that the algorithm model has a good state recognition rate for bearings.
The IBA-ISMO Method for Rolling Bearing Fault Diagnosis Based on VMD-Sample Entropy.
阅读:4
作者:Zhuang Deyu, Liu Hongrui, Zheng Hao, Xu Liang, Gu Zhengyang, Cheng Gang, Qiu Jinbo
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Jan 15; 23(2):991 |
| doi: | 10.3390/s23020991 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
