Diffusion of molecules in porous media is a critical process that is fundamental to numerous chemical, physical, and biological applications. The prevailing theoretical frameworks are challenged when explaining the complex dynamics resulting from the highly tortuous host structure and strong guest-host interactions, especially when the pore size approximates the size of diffusing molecule. This study, using molecular dynamics, formulates a semiempirical model based on theoretical considerations and factorization that offer an alternative view of diffusion and its link with the structure and behavior (sorption and deformation) of material. By analyzing the intermittent dynamics of water, microscopic self-diffusion coefficients are predicted. The apparent tortuosity, defined as the ratio of the bulk to the confined self-diffusion coefficients, is found to depend quantitatively on a limited set of material parameters: heat of adsorption, elastic modulus, and percolation probability, all of which are experimentally accessible. The proposed sorption-deformation-percolation model provides guidance on the understanding and fine-tuning of diffusion.
Sorption-Deformation-Percolation Model for Diffusion in Nanoporous Media.
阅读:3
作者:Zhang Chi, Shomali Ali, Coasne Benoit, Derome Dominique, Carmeliet Jan
| 期刊: | ACS Nano | 影响因子: | 16.000 |
| 时间: | 2023 | 起止号: | 2023 Mar 14; 17(5):4507-4514 |
| doi: | 10.1021/acsnano.2c10384 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
