Despite the thousands of years of wood utilization, the mechanisms of wood hygromechanics remain barely elucidated, owing to the nanoscopic system size and highly coupled physics. This study uses molecular dynamics simulations to systematically characterize wood polymers, their mixtures, interface, and composites, yielding an unprecedented micromechanical dataset including swelling, mechanical weakening, and hydrogen bonding, over the full hydration range. The rich data reveal the mechanism of wood cell wall hygromechanics: Cellulose fiber dominates the mechanics of cell wall along the longitudinal direction. Hemicellulose glues lignin and cellulose fiber together defining the cell wall mechanics along the transverse direction, and water severely disturbs the hemicellulose-related hydrogen bonds. In contrast, lignin is rather hydration independent and serves mainly as a space filler. The moisture-induced highly anisotropic swelling and weakening of wood cell wall is governed by the interplay of cellulose reinforcement, mechanical degradation of matrix, and fiber-matrix interface.
Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis.
阅读:3
作者:Zhang Chi, Chen Mingyang, Keten Sinan, Coasne Benoit, Derome Dominique, Carmeliet Jan
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2021 | 起止号: | 2021 Sep 10; 7(37):eabi8919 |
| doi: | 10.1126/sciadv.abi8919 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
