Jatropha half-sib family selection with high adaptability and genotypic stability.

阅读:6
作者:Azevedo Peixoto Leonardo de, Teodoro Paulo Eduardo, Silva Lidiane Aparecida, Rodrigues Erina Vitório, Laviola Bruno Galvêas, Bhering Leonardo Lopes
Jatropha (Jatropha curcas) has become one of the most important species for producing biofuels. Currently, Genotype x Environment (GxE) interaction is the biggest challenge that breeders should solve to increase the section accuracy in the plant breeding. Therefore, the objectives in this study were to estimate the parameters in the 180 half-sib families in Jatropha evaluated for five production years, to verify the significance of the GxE interaction variance, to evaluate the adaptability and stability for each family based on three prediction methods, to select superior half-sib families based on the adaptability and stability analyses, and to predict the accuracy for the sixth production year. Jatropha half-sib families were classified and selected using the follow adaptability and stability methods: linear regression, bi-segmented linear regression and mixed models concepts called harmonic mean of the relative performance of genetic values (HMRPGV). The prediction accuracy was estimated by the Pearson correlation between the predicted genetic values by adaptability and stability methods and the phenotypic value in the sixth production year. In result, most half-sib families were classified as general adaptability and general stability for the evaluated traits. The selection gain obtained via HMRPGV was higher than other methods. The prediction accuracy for the sixth production year was 0.45. Therefore, HMRPGV is efficient to maximize the genetic gain, and it can be a useful strategy to select genotype with high adaptability and stability in Jatropha breeding as well as other species that should be evaluated for many years to take a suitable selection accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。