Photovoltaic Power Prediction Based on Hybrid Deep Learning Networks and Meteorological Data.

阅读:4
作者:Guo Wei, Xu Li, Wang Tian, Zhao Danyang, Tang Xujing
Conventional point prediction methods encounter challenges in accurately capturing the inherent uncertainty associated with photovoltaic power due to its stochastic and volatile nature. To address this challenge, we developed a robust prediction model called QRKDDN (quantile regression and kernel density estimation deep learning network) by leveraging historical meteorological data in conjunction with photovoltaic power data. Our aim is to enhance the accuracy of deterministic predictions, interval predictions, and probabilistic predictions by incorporating quantile regression (QR) and kernel density estimation (KDE) techniques. The proposed method utilizes the Pearson correlation coefficient for selecting relevant meteorological factors, employs a Gaussian Mixture Model (GMM) for clustering similar days, and constructs a deep learning prediction model based on a convolutional neural network (CNN) combined with a bidirectional gated recurrent unit (BiGRU) and attention mechanism. The experimental results obtained using the dataset from the Australian DKASC Research Centre unequivocally demonstrate the exceptional performance of QRKDDN in deterministic, interval, and probabilistic predictions for photovoltaic (PV) power generation. The effectiveness of QRKDDN was further validated through ablation experiments and comparisons with classical machine learning models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。