In this paper, we provide new proofs of the existence and the condensation of Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with periodic boundary conditions and an arbitrary density of up arrows (per line) in the regime Π< 1 . As an application, we provide a short, fully rigorous computation of the free energy of the six-vertex model on the torus, as well as an asymptotic expansion of the six-vertex partition functions when the density of up arrows approaches 1/2. This latter result is at the base of a number of recent results, in particular the rigorous proof of continuity/discontinuity of the phase transition of the random-cluster model, the localization/delocalization behaviour of the six-vertex height function when a = b = 1 and c â¥Â 1 , and the rotational invariance of the six-vertex model and the Fortuin-Kasteleyn percolation.
On the Six-Vertex Model's Free Energy.
阅读:5
作者:Duminil-Copin Hugo, Kozlowski Karol Kajetan, Krachun Dmitry, Manolescu Ioan, Tikhonovskaia Tatiana
| 期刊: | Communications in Mathematical Physics | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022;395(3):1383-1430 |
| doi: | 10.1007/s00220-022-04459-x | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
