In this paper, we provide new proofs of the existence and the condensation of Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with periodic boundary conditions and an arbitrary density of up arrows (per line) in the regime Π< 1 . As an application, we provide a short, fully rigorous computation of the free energy of the six-vertex model on the torus, as well as an asymptotic expansion of the six-vertex partition functions when the density of up arrows approaches 1/2. This latter result is at the base of a number of recent results, in particular the rigorous proof of continuity/discontinuity of the phase transition of the random-cluster model, the localization/delocalization behaviour of the six-vertex height function when a = b = 1 and c â¥Â 1 , and the rotational invariance of the six-vertex model and the Fortuin-Kasteleyn percolation.
On the Six-Vertex Model's Free Energy.
阅读:12
作者:Duminil-Copin Hugo, Kozlowski Karol Kajetan, Krachun Dmitry, Manolescu Ioan, Tikhonovskaia Tatiana
| 期刊: | Communications in Mathematical Physics | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022;395(3):1383-1430 |
| doi: | 10.1007/s00220-022-04459-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
