A "salt and pepper" noise reduction scheme for digital images based on Support Vector Machines classification and regression.

阅读:8
作者:Gómez-Moreno Hilario, Gil-Jiménez Pedro, Lafuente-Arroyo Sergio, López-Sastre Roberto, Maldonado-Bascón Saturnino
We present a new impulse noise removal technique based on Support Vector Machines (SVM). Both classification and regression were used to reduce the "salt and pepper" noise found in digital images. Classification enables identification of noisy pixels, while regression provides a means to determine reconstruction values. The training vectors necessary for the SVM were generated synthetically in order to maintain control over quality and complexity. A modified median filter based on a previous noise detection stage and a regression-based filter are presented and compared to other well-known state-of-the-art noise reduction algorithms. The results show that the filters proposed achieved good results, outperforming other state-of-the-art algorithms for low and medium noise ratios, and were comparable for very highly corrupted images.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。