We present a new impulse noise removal technique based on Support Vector Machines (SVM). Both classification and regression were used to reduce the "salt and pepper" noise found in digital images. Classification enables identification of noisy pixels, while regression provides a means to determine reconstruction values. The training vectors necessary for the SVM were generated synthetically in order to maintain control over quality and complexity. A modified median filter based on a previous noise detection stage and a regression-based filter are presented and compared to other well-known state-of-the-art noise reduction algorithms. The results show that the filters proposed achieved good results, outperforming other state-of-the-art algorithms for low and medium noise ratios, and were comparable for very highly corrupted images.
A "salt and pepper" noise reduction scheme for digital images based on Support Vector Machines classification and regression.
阅读:3
作者:Gómez-Moreno Hilario, Gil-Jiménez Pedro, Lafuente-Arroyo Sergio, López-Sastre Roberto, Maldonado-Bascón Saturnino
| 期刊: | Scientific World Journal | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014;2014:826405 |
| doi: | 10.1155/2014/826405 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
