Comparative modelling of crack propagation in elastic-plastic materials using the meshfree local radial basis point interpolation method and eXtended finite-element method.

阅读:5
作者:Li Yazhe, Xu Nengxiong, Tu Jinzhi, Mei Gang
The modelling and understanding of crack propagation for elastic-plastic materials is critical in various engineering applications, such as safety analysis of concrete structures and stability analysis of rock slopes. In this paper, the local radial basis point interpolation method (LRPIM) combined with elastic-plastic theory and fracture mechanics is employed to analyse crack propagation in elastic-plastic materials. Crack propagation in elastic-plastic materials is compared using the LRPIM and eXtended finite-element method (XFEM). The comparative investigation indicates that: (i) the LRPIM results are close to the model test results, which indicates that it is feasible for analysing the crack growth of elastic-plastic materials; (ii) compared with the LRPIM, the XFEM results are closer to the experimental results, showing that the XFEM has higher accuracy and computational efficiency; and (iii) compared with the XFEM, when the LRPIM method is used to analyse crack propagation, the propagation path is not smooth enough, which can be explained as the crack tip stress and strain not being accurate enough and still needing further improvement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。