Interaction patterns at the individual level influence the behaviour of diffusion over contact networks. Most of the current diffusion models only consider direct interactions, capable of transferring infectious items among individuals, to build transmission networks of diffusion. However, delayed indirect interactions, where a susceptible individual interacts with infectious items after the infected individual has left the interaction space, can also cause transmission events. We define a diffusion model called the same place different time transmission (SPDT)-based diffusion that considers transmission links for these indirect interactions. Our SPDT model changes the network dynamics where the connectivity among individuals varies with the decay rates of link infectivity. We investigate SPDT diffusion behaviours by simulating airborne disease spreading on data-driven contact networks. The SPDT model significantly increases diffusion dynamics with a high rate of disease transmission. By making the underlying connectivity denser and stronger due to the inclusion of indirect transmissions, SPDT models are more realistic than same place same time transmission (SPST)-based models for the study of various airborne disease outbreaks. Importantly, we also find that the diffusion dynamics including indirect links are not reproducible by the current SPST models based on direct links, even if both SPDT and SPST networks assume the same underlying connectivity. This is because the transmission dynamics of indirect links are different from those of direct links. These outcomes highlight the importance of the indirect links for predicting outbreaks of airborne diseases.
Indirect interactions influence contact network structure and diffusion dynamics.
阅读:7
作者:Shahzamal Md, Jurdak Raja, Mans Bernard, de Hoog Frank
| 期刊: | Royal Society Open Science | 影响因子: | 2.900 |
| 时间: | 2019 | 起止号: | 2019 Aug 28; 6(8):190845 |
| doi: | 10.1098/rsos.190845 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
