A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells.

阅读:4
作者:Kuo Ming-Wei, Wang Sheng-Hung, Chang Jui-Chin, Chang Chien-Huei, Huang Ling-Jyun, Lin Hsin-Hung, Yu Alice Lin-Tsing, Li Wen-Hsiung, Yu John
Although the human genome project has been completed for some time, the issue of the number of transcribed genes with identifiable biological functions remains unresolved. We used zebrafish as a model organism to study the functions of Ka/Ks-predicted novel human exons, which were identified from a comparative evolutionary genomics analysis.In this study, a novel gene, designated as puf-A, was cloned and functionally characterized, and its homologs in zebrafish, mouse, and human were identified as one of the three homolog clusters which were consisted of 14 related proteins with Puf repeats. Computer modeling of human Puf-A structure and a pull-down assay for interactions with RNA targets predicted that it was a RNA-binding protein. Specifically, Puf-A contained a special six Puf-repeat domain, which constituted a unique superhelix half doughnut-shaped Puf domain with a topology similar to, but different from the conventional eight-repeat Pumilio domain. Puf-A transcripts were uniformly distributed in early embryos, but became restricted primarily to eyes and ovaries at a later stage of development. In mice, puf-A expression was detected primarily in retinal ganglion and pigmented cells. Knockdown of puf-A in zebrafish embryos resulted in microphthalmia, a small head, and abnormal primordial germ-cell (PGC) migration. The latter was confirmed by microinjecting into embryos puf-A siRNA containing nanos 3' UTR that expressed in PGC only. The importance of Puf-A in the maturation of germline stem cells was also implicated by its unique expression in the most primitive follicles (stage I) in adult ovaries, followed by a sharp decline of expression in later stages of folliculogenesis. Taken together, our study shows that puf-A plays an important role not only in eye development, but also in PGC migration and the specification of germ cell lineage. These studies represent an exemplary implementation of a unique platform to uncover unknown function(s) of human genes and their roles in development regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。