Novel second-generation rapid diagnostics based on nucleic acid amplification tests (NAAT) offer performance metrics on par with clinical laboratories in detecting infectious diseases at the point of care. The diagnostic assay is typically performed within a Lab-on-a-Chip (LoC) component with integrated temperature regulation. However, constraints on device dimensions, cost and power supply inherent with the device format apply to temperature regulation as well. Thermal analysis on simplified thermal models for the device can help overcome these barriers by speeding up thermal optimization. In this work, we perform experimental thermal analysis on the simplified thermal model for our instrument-free, single-use LoC NAAT platform. The system is evaluated further by finite element modelling. Steady-state as well as transient thermal analysis are performed to evaluate the performance of a self-regulating polymer resin heating element in the proposed device geometry. Reaction volumes in the target temperature range of the amplification reaction are estimated in the simulated model to assess compliance with assay requirements. Using the proposed methodology, we demonstrated our NAAT device concept capable of performing loop-mediated isothermal amplification in the 20â»25 °C ambient temperature range with 32 min total assay time.
Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform.
阅读:4
作者:Pardy Tamás, Rang Toomas, Tulp Indrek
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2018 | 起止号: | 2018 Jun 4; 18(6):1812 |
| doi: | 10.3390/s18061812 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
