RWOA: A novel enhanced whale optimization algorithm with multi-strategy for numerical optimization and engineering design problems.

阅读:8
作者:Wei Junhao, Gu Yanzhao, Lu Baili, Cheong Ngai
Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. However, WOA suffers from issues such as slow convergence speed, low convergence accuracy, reduced population diversity in the later stages of iteration, and an imbalance between exploration and exploitation. To address these drawbacks, this paper proposed an enhanced Whale Optimization Algorithm (RWOA). RWOA utilized Good Nodes Set method to generate evenly distributed whale individuals and incorporated Hybrid Collaborative Exploration strategy, Spiral Encircling Prey strategy, and an Enhanced Spiral Updating strategy integrated with Levy flight. Additionally, an Enhanced Cauchy Mutation based on Differential Evolution was employed. Furthermore, we redesigned the update method for parameter a to better balance exploration and exploitation. The proposed RWOA was evaluated using 23 classical benchmark functions and the impact of six improvement strategies was analyzed. We also conducted a quantitative analysis of RWOA and compared its performance with other state-of-the-art (SOTA) metaheuristic algorithms. Finally, RWOA was applied to nine engineering design optimization problems to validate its ability to solve real-world optimization challenges. The experimental results demonstrated that RWOA outperformed other algorithms and effectively addressed the shortcomings of the canonical WOA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。