A Failure Risk-Aware Multi-Hop Routing Protocol in LPWANs Using Deep Q-Network.

阅读:3
作者:Tao Shaojun, Tang Hongying, Wang Jiang, Li Baoqing
Multi-hop routing over low-power wide-area networks (LPWANs) has emerged as a promising technology for extending network coverage. However, existing protocols face high transmission disruption risks due to factors such as dynamic topology driven by stochastic events, dynamic link quality, and coverage holes induced by imbalanced energy consumption. To address this issue, we propose a failure risk-aware deep Q-network-based multi-hop routing (FRDR) protocol, aiming to reduce transmission disruption probability. First, we design a power regulation mechanism (PRM) that works in conjunction with pre-selection rules to optimize end-device node (EN) activations and candidate relay selection. Second, we introduce the concept of routing failure risk value (RFRV) to quantify the potential failure risk posed by each candidate next-hop EN, which correlates with its neighborhood state characteristics (i.e., the number of neighbors, the residual energy level, and link quality). Third, a deep Q-network (DQN)-based routing decision mechanism is proposed, where a multi-objective reward function incorporating RFRV, residual energy, distance to the gateway, and transmission hops is utilized to determine the optimal next-hop. Simulation results demonstrate that FRDR outperforms existing protocols in terms of packet delivery rate and network lifetime while maintaining comparable transmission delay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。