In pedestrian inertial navigation, multi-sensor fusion is often used to obtain accurate heading estimates. As a widely distributed signal source, the geomagnetic field is convenient to provide sufficiently accurate heading angles. Unfortunately, there is a broad presence of artificial magnetic perturbations in indoor environments, leading to difficulties in geomagnetic correction. In this paper, by analyzing the spatial distribution model of the magnetic interference field on the geomagnetic field, two quantitative features have been found to be crucial in distinguishing normal magnetic data from anomalies. By leveraging these two features and the classification and regression tree (CART) algorithm, we trained a decision tree that is capable of extracting magnetic data from distorted measurements. Furthermore, this well-trained decision tree can be used as a reject gate in a Kalman filter. By combining the decision tree and Kalman filter, a high-precision indoor pedestrian navigation system based on a magnetically assisted inertial system is proposed. This system is then validated in a real indoor environment, and the results show that our system delivers state-of-the-art positioning performance. Compared to other baseline algorithms, an improvement of over 70% in the positioning accuracy is achieved.
Improving the Heading Accuracy in Indoor Pedestrian Navigation Based on a Decision Tree and Kalman Filter.
阅读:3
作者:Hu Guanghui, Zhang Weizhi, Wan Hong, Li Xinxin
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2020 | 起止号: | 2020 Mar 12; 20(6):1578 |
| doi: | 10.3390/s20061578 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
