The possible role of radical species in the formation of the long-lived triplet states observed for 2-thiocytosine upon UV irradiation was theoretically investigated. It is predicted that the radical fragments arising from the homolytic rupture of the NH group of the thiobase can be yielded upon ultraviolet-A radiation. Recombination of the radicals through the most favorable singlet channel yields the lowest-lying tautomer of the 2-thiocytosine (the amino-thiol form) through a barrierless pathway. The rebounding of the radical fragments along the triplet channels that emerge from the attack of the hydrogen to the nitrogen atoms next to the C-S bond leads to stable structures for the amino-thion-N(1)H and amino-thion-N(3)H tautomers. These results allow for the rationalization of the near-unity triplet yields observed when this pure light-atom organic molecule is exposed to UV irradiation, without invoking intersystem crossings between the electronic states of different spin-multiplicities. A similar study for cytosine showed that the energy required to induce the homolytic breaking of the N-H bond of the nucleobase is not attainable under UVA radiation. This result is consistent with the experimental fact that no triplet states are observed when this molecule is exposed to that light.
Disruptive Model That Explains for the Long-Lived Triplet States Observed for 2-Thiocytosine upon UVA Radiation.
阅读:3
作者:Baños Jorge, Avilés Alejandro, Colmenares Fernando
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2024 | 起止号: | 2024 Mar 8; 9(11):13059-13066 |
| doi: | 10.1021/acsomega.3c09471 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
