Exploring the prognostic analysis of autophagy and tumor microenvironment based on monocyte cells in lung cancer.

阅读:4
作者:Tao Bo, Wang Ziming, Xie Dacheng, Cui Hongxue, Zhao Bin, Li Juanjuan, Guo Liang
A deep understanding of the biological mechanisms of lung cancer offers more precise treatment options for patients. In our study, we integrated data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) to investigate lung adenocarcinoma. Analyzing 538 lung cancer samples and 31 normal samples, we focused on 3076 autophagy-related genes. Using Seurat, dplyr, tidyverse, and ggplot2, we conducted single-cell data analysis, assessing the quality and performing Principal Component Analysis (PCA) and t-SNE analyses. Differential analysis of TCGA data using the "Limma" package, followed by immune infiltration analysis using the CIBERSORT algorithm, led us to identify seven key genes. These genes underwent further scrutiny through consensus clustering and gene set variation analysis (GSVA). We developed a prognostic model using Lasso Cox regression and multivariable Cox analysis, which was then validated with a nomogram, predicting survival rates for lung adenocarcinoma. The model's accuracy and universality were corroborated by ROC curves. Additionally, we explored the relationship between immune checkpoint genes and immune cell infiltration and identified two key genes, HLA-DQB1 and OLR1. This highlighted their potential as therapeutic targets. Our comprehensive approach sheds light on the molecular landscape of lung adenocarcinoma and offers insights into potential treatment strategies, emphasizing the importance of integrating single-cell and genomic data in cancer research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。