Asymmetric metasurfaces supporting quasi-bound states in the continuum (BICs) with high Q-factors and strong light-matter interaction properties are attractive platforms for label-free biosensing applications. Recently, various meta-atom geometries have been exploited to support sharp high-Q quasi-BIC resonance. However, which meta-atom design may be a better practical choice remains unclear. Here, we compared several established meta-atom designs to address this issue by conducting an extensive theoretical discussion on sensing capability and fabrication difficulty. We theoretically revealed that the tetramer meta-atom geometry produces a higher surface sensitivity and exhibits a larger size-to-wavelength ratio than other meta-atom schemes. Furthermore, we found that metasurfaces with a higher depth considerably enhance surface sensitivity. The performance of two asymmetric tetramer metasurfaces (ATMs) with different heights was demonstrated experimentally. Both shallow and thick ATM structures exhibit sharp high Q-factor resonances with polarization-insensitive features. Notably, the surface sensitivity is 1.62 times for thick ATM compared to that for shallow ones. The combination of properties opens new opportunities for developing biosensing or chemical-sensing applications with high performance.
Asymmetric tetramer metasurface sensor governed by quasi-bound states in the continuum.
阅读:3
作者:Zhou Yi, Luo Man, Zhao Xuyang, Li Yuxiang, Wang Qi, Liu Zhiran, Guo Junhong, Guo Zhihe, Liu Junjie, Wu Xiang
| 期刊: | Nanophotonics | 影响因子: | 6.600 |
| 时间: | 2023 | 起止号: | 2023 Mar 6; 12(7):1295-1307 |
| doi: | 10.1515/nanoph-2023-0003 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
