Sleep postures monitoring based on capacitively coupled electrodes and deep recurrent neural networks.

阅读:4
作者:Peng Shun, Li Yang, Cui Rui, Xu Ke, Wu Yonglin, Huang Ming, Dai Chenyun, Tamur Toshiyo, Mukhopadhyay Subhas, Chen Chen, Chen Wei
BACKGROUND: Capacitively coupled electrode (CC electrode), as a non-contact and unobtrusive technology for measuring physiological signals, has been widely applied in sleep monitoring scenarios. The most common implementation is capacitive electrocardiogram (cECG) that could provide useful clinical information for assessing cardiac function and detecting cardiovascular diseases. In the current study, we sought to explore another potential application of cECG in sleep monitoring, i.e., sleep postures recognition. METHODS: Two sets of experiments, the short-term experiment, and the overnight experiment, were conducted. The cECG signals were measured by a smart mattress based on flexible CC electrodes and sleep postures were recorded simultaneously. Then, a classifier model based on a deep recurrent neural network (RNN) was proposed to distinguish sleep postures (supine, left lateral and right lateral). To verify the reliability of the proposed model, leave-one-subject-out cross-validation was introduced. RESULTS: In the short-term experiment, the overall accuracy of 96.2% was achieved based on 30-s segment, while the overall accuracy was 88.8% using one heart beat segment. For the unconstrained overnight experiment, the accuracy of 91.0% was achieved based on 30-s segment, while the accuracy was 81.4% using one heart beat segment. CONCLUSIONS: The results suggest that cECG could render valuable information about sleep postures detection and potentially be helpful for sleep disorder diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。