Molecular image segmentation based on improved fuzzy clustering.

阅读:3
作者:Yu Jinhua, Wang Yuanyuan
Segmentation of molecular images is a difficult task due to the low signal-to-noise ratio of images. A novel two-dimensional fuzzy C-means (2DFCM) algorithm is proposed for the molecular image segmentation. The 2DFCM algorithm is composed of three stages. The first stage is the noise suppression by utilizing a method combining a Gaussian noise filter and anisotropic diffusion techniques. The second stage is the texture energy characterization using a Gabor wavelet method. The third stage is introducing spatial constraints provided by the denoising data and the textural information into the two-dimensional fuzzy clustering. The incorporation of intensity and textural information allows the 2DFCM algorithm to produce satisfactory segmentation results for images corrupted by noise (outliers) and intensity variations. The 2DFCM can achieve 0.96 +/- 0.03 segmentation accuracy for synthetic images under different imaging conditions. Experimental results on a real molecular image also show the effectiveness of the proposed algorithm.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。