The quantum anomalous Hall effect (QAHE) has unique advantages in topotronic applications, but it is still challenging to realize the QAHE with tunable magnetic and topological properties for building functional devices. Through systematic first-principles calculations, we predict that the in-plane magnetization induced QAHE with Chern numbers C = ±1 and the out-of-plane magnetization induced QAHE with high Chern numbers C = ±3 can be realized in a single material candidate, which is composed of van der Waals (vdW) coupled Bi and MnBi(2)Te(4) monolayers. The switching between different phases of QAHE can be controlled in multiple ways, such as applying strain or (weak) magnetic field or twisting the vdW materials. The prediction of an experimentally available material system hosting robust, highly tunable QAHE will stimulate great research interest in the field. Our work opens a new avenue for the realization of tunable QAHE and provides a practical material platform for the development of topological electronics.
Tunable quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures.
阅读:4
作者:Xue Feng, Hou Yusheng, Wang Zhe, Xu Zhiming, He Ke, Wu Ruqian, Xu Yong, Duan Wenhui
| 期刊: | National Science Review | 影响因子: | 17.100 |
| 时间: | 2024 | 起止号: | 2023 May 25; 11(3):nwad151 |
| doi: | 10.1093/nsr/nwad151 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
