MLWAN: Multi-Scale Learning Wavelet Attention Module Network for Image Super Resolution.

阅读:7
作者:Ma Jian, Han Xiyu, Zhang Xiaoyin, Li Zhipeng
Image super resolution (SR) is an important image processing technique in computer vision to improve the resolution of images and videos. In recent years, deep convolutional neural network (CNN) has made significant progress in the field of image SR; however, the existing CNN-based SR methods cannot fully search for background information in the measurement of feature extraction. In addition, in most cases, different scale factors of image SR are assumed to be different assignments and completed by training different models, which does not meet the actual application requirements. To solve these problems, we propose a multi-scale learning wavelet attention network (MLWAN) model for image SR. Specifically, the proposed model consists of three parts. In the first part, low-level features are extracted from the input image through two convolutional layers, and then a new channel-spatial attention mechanism (CSAM) block is concatenated. In the second part, CNN is used to predict the highest-level low-frequency wavelet coefficients, and the third part uses recursive neural networks (RNN) with different scales to predict the wavelet coefficients of the remaining subbands. In order to further achieve lightweight, an effective channel attention recurrent module (ECARM) is proposed to reduce network parameters. Finally, the inverse discrete wavelet transform (IDWT) is used to reconstruct HR image. Experimental results on public large-scale datasets demonstrate the superiority of the proposed model in terms of quantitative indicators and visual effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。