Aqueous zinc ion secondary batteries (ZIBs) have recently attracted considerable attention and global interest due to their low cost, aqueous-based nature and great safety. Unfortunately, the intrinsic properties of poor cycle life, low energy density and uncontrolled dendrite growth during the charge/discharge process for metallic Zn anodes significantly hinder their practical application. In this work, we rationally designed two-dimensional (2D) δ-MnO(2) nanofluidic channels by the ordered restacking of exfoliated MnO(2) single atomic layers, which exhibited a high zinc ion transport coefficient (1.93 à 10(-14) cm(2) s(-1)) owing to their appropriate d-spacing and the negative charge of the inner channel walls. More importantly, we found that Zn dendrite growth was prevented in the as-assembled ZIBs, resulting in superior stability compared with the bulk-MnO(2) sample. Our design sheds light on developing high-performance ZIBs from two-dimensional nanofluidic channels, and this strategy might be applicable to the storage of other metal ions (Mg(2+), Ca(2+), Al(3+), etc.) in next-generation electrochemical energy storage devices.
A long-lifespan, flexible zinc-ion secondary battery using a paper-like cathode from single-atomic layer MnO(2) nanosheets.
阅读:7
作者:Wang Yanan, Wu Zeyi, Jiang Le, Tian Wenchao, Zhang Chenchen, Cai Cailing, Hu Linfeng
| 期刊: | Nanoscale Advances | 影响因子: | 4.600 |
| 时间: | 2019 | 起止号: | 2019 Sep 30; 1(11):4365-4372 |
| doi: | 10.1039/c9na00519f | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
