A long-lifespan, flexible zinc-ion secondary battery using a paper-like cathode from single-atomic layer MnO(2) nanosheets.

阅读:3
作者:Wang Yanan, Wu Zeyi, Jiang Le, Tian Wenchao, Zhang Chenchen, Cai Cailing, Hu Linfeng
Aqueous zinc ion secondary batteries (ZIBs) have recently attracted considerable attention and global interest due to their low cost, aqueous-based nature and great safety. Unfortunately, the intrinsic properties of poor cycle life, low energy density and uncontrolled dendrite growth during the charge/discharge process for metallic Zn anodes significantly hinder their practical application. In this work, we rationally designed two-dimensional (2D) δ-MnO(2) nanofluidic channels by the ordered restacking of exfoliated MnO(2) single atomic layers, which exhibited a high zinc ion transport coefficient (1.93 × 10(-14) cm(2) s(-1)) owing to their appropriate d-spacing and the negative charge of the inner channel walls. More importantly, we found that Zn dendrite growth was prevented in the as-assembled ZIBs, resulting in superior stability compared with the bulk-MnO(2) sample. Our design sheds light on developing high-performance ZIBs from two-dimensional nanofluidic channels, and this strategy might be applicable to the storage of other metal ions (Mg(2+), Ca(2+), Al(3+), etc.) in next-generation electrochemical energy storage devices.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。