Properly integrating spatially resolved transcriptomics (SRT) generated from different batches into a unified gene-spatial coordinate system could enable the construction of a comprehensive spatial transcriptome atlas. Here, we propose SPIRAL, consisting of two consecutive modules: SPIRAL-integration, with graph domain adaptation-based data integration, and SPIRAL-alignment, with cluster-aware optimal transport-based coordination alignment. We verify SPIRAL with both synthetic and real SRT datasets. By encoding spatial correlations to gene expressions, SPIRAL-integration surpasses state-of-the-art methods in both batch effect removal and joint spatial domain identification. By aligning spots cluster-wise, SPIRAL-alignment achieves more accurate coordinate alignments than existing methods.
SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies.
阅读:4
作者:Guo Tiantian, Yuan Zhiyuan, Pan Yan, Wang Jiakang, Chen Fengling, Zhang Michael Q, Li Xiangyu
| 期刊: | Genome Biology | 影响因子: | 9.400 |
| 时间: | 2023 | 起止号: | 2023 Oct 20; 24(1):241 |
| doi: | 10.1186/s13059-023-03078-6 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
