Digital Frequency-Domain MIMO Equalizer Enabling Six-LP-Mode Strong-Coupling IM/DD MDM Optical Transmission System.

阅读:8
作者:Long Jianyu, Wang Chen, Wu Ying, Sang Bohan, Bian Chengzhen, Yang Xiongwei, Zhang Long, Chen Yifan, Zhang Qinyi, Wang Ying, Li Yichen, Zhou Wen, Wang Kaihui, Liu Bo, Shen Lei, Yu Jianjun
Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received signals, two approaches have been explored to address this issue: one involves the application of all-link weakly coupled components to suppress modal crosstalk, while the other utilizes optical multiple-input-multiple-output (MIMO) equalizers based on optical devices for signal decoupling. However, pure digital signal processing (DSP)-based schemes for mode decoupling in IM/DD MDM systems with strong mode coupling remain unexplored. In this paper, we propose to use a frequency-domain MIMO equalizer for compensating the modal interference in the strong-coupling linear-polarized (LP) MDM IM/DD system. The signal recovery capability of the proposed method is verified through numerical simulation. Finally, we successfully experimentally demonstrate the transmission of on-off-key (OOK) signals in a six-LP-mode strong-coupling MDM IM/DD system over a 10 km few-mode fiber, employing a pair of strong-coupling mode multiplexers/demultiplexers. The experimental results indicate that, with the frequency-domain MIMO equalizer, OOK signals from all modes can be recovered with an 11% hard-decision forward error correction threshold of 8.3 × 10-3. The proposed method facilitated by flexible DSP software offers an alternative for short-reach communication systems and has the potential to advance the practical application of MDM techniques in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。