Adipose-Derived Stem Cells Respond to Increased Osmolarities.

阅读:4
作者:Potočar UrÅ¡ka, Hudoklin Samo, Kreft Mateja Erdani, ZavrÅ¡nik Janja, Božikov KreÅ¡imir, Fröhlich Mirjam
Cell therapies present a feasible option for the treatment of degenerated cartilaginous and intervertebral disc (IVD) tissues. Microenvironments of these tissues are specific and often differ from the microenvironment of cells that, could be potentially used for therapy, e.g. human adipose-derived stem cells (hASC). To ensure safe and efficient implantation of hASC, it is important to evaluate how microenvironmental conditions at the site of implantation affect the implanted cells. This study has demonstrated that cartilaginous tissue-specific osmolarities ranging from 400-600 mOsm/L affected hASC in a dose- and time-dependent fashion in comparison to 300 mOsm/L. Increased osmolarities resulted in transient (nuclear DNA and actin reorganisation) and non-transient, long-term morphological changes (vesicle formation, increase in cell area, and culture morphology), as well as reduced proliferation in monolayer cultures. Increased osmolarities diminished acid proteoglycan production and compactness of chondrogenically induced pellet cultures, indicating decreased chondrogenic potential. Viability of hASC was strongly dependent on the type of culture, with hASC in monolayer culture being more tolerant to increased osmolarity compared to hASC in suspension, alginate-agarose hydrogel, and pellet cultures, thus emphasizing the importance of choosing relevant in vitro conditions according to the specifics of clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。