Optical Fiber Vibration Signal Recognition Based on the EMD Algorithm and CNN-LSTM.

阅读:4
作者:Li Kun, Zhen Yao, Li Peng, Hu Xinyue, Yang Lixia
Accurately identifying optical fiber vibration signals is crucial for ensuring the proper operation of optical fiber perimeter security warning systems. To enhance the recognition accuracy of intrusion events detected by the distributed acoustic sensing system (DAS) based on phase-sensitive optical time-domain reflectometer (φ-OTDR) technology, we propose an identification method that combines empirical mode decomposition (EMD) with convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. First, the EMD algorithm decomposes the collected original optical fiber vibration signal into several intrinsic mode functions (IMFs), and the correlation coefficient between each IMF and the original signal is calculated. The signal is then reconstructed by selecting effective IMF components based on a suitable threshold. This reconstructed signal serves as the input for the network. CNN is used to extract time-series features from the vibration signal and LSTM is employed to classify the reconstructed signal. Experimental results demonstrate that this method effectively identifies three different types of vibration signals collected from a real-world environment, achieving a recognition accuracy of 97.3% for intrusion signals. This method successfully addresses the challenge of φ-OTDR pattern recognition and provides valuable insights for the development of practical engineering products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。