In this work, we proposed a hybrid pointer network (HPN), an end-to-end deep reinforcement learning architecture is provided to tackle the travelling salesman problem (TSP). HPN builds upon graph pointer networks, an extension of pointer networks with an additional graph embedding layer. HPN combines the graph embedding layer with the transformer's encoder to produce multiple embeddings for the feature context. We conducted extensive experimental work to compare HPN and Graph pointer network (GPN). For the sack of fairness, we used the same setting as proposed in GPN paper. The experimental results show that our network significantly outperforms the original graph pointer network for small and large-scale problems. For example, it reduced the cost for travelling salesman problems with 50 cities/nodes (TSP50) from 5.959 to 5.706 without utilizing 2opt. Moreover, we solved benchmark instances of variable sizes using HPN and GPN. The cost of the solutions and the testing times are compared using Linear mixed effect models. We found that our model yields statistically significant better solutions in terms of the total trip cost. We make our data, models, and code publicly available https://github.com/AhmedStohy/Hybrid-Pointer-Networks.
Hybrid pointer networks for traveling salesman problems optimization.
阅读:4
作者:Stohy Ahmed, Abdelhakam Heba-Tullah, Ali Sayed, Elhenawy Mohammed, Hassan Abdallah A, Masoud Mahmoud, Glaser Sebastien, Rakotonirainy Andry
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2021 | 起止号: | 2021 Dec 14; 16(12):e0260995 |
| doi: | 10.1371/journal.pone.0260995 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
