Applied current thermoacoustic imaging for biological tissues.

阅读:7
作者:Yang Yanju, Xia Zhengwu, Xia Hui, Li Yanhong, Liu Guoqiang, Xu Jianhua
BACKGROUND: The large differences of electrical characteristics can be used to reflect the physiological and pathological changes about biological tissues, and it can provide evidence for the early diagnosis and treatment of cancer in potential applications. OBJECTIVE: This paper describes a method called Applied Current Thermoacoustic Imaging (ACTAI) and explores the theory and demonstrates a low conductivity numerical simulation and fresh pork experimental studies. METHODS: In this paper, firstly, the principle of ACTAI is studied. In ACTAI, a target is applied with a microsecond width Gaussian pulse current. Then the target absorbs Joule heat and expands instantaneously, sending out thermoacoustic waves. The waves contain the conductivity information of the target. The waves received by sound transducers are processed by the time inversion method to reconstruct the sound source distribution of the target to illustrate the conductivity information of the target. Secondly, a square model with low conductivity was used as a target to conduct numerical simulation of ACTAI. Lastly, a fresh pork experiment study was conducted. RESULTS: The presented experimental results suggest that ACTAI can identify the conductivity changes information of the target with perfect imagery contrast and deep penetration. CONCLUSION: The ACTAI modality would benefit from the noncontact measurement and can be convenient for clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。