In the cat's visual cortex, the responses of simple cells seem to be totally determined by their thalamic input, yet only a few percent of the excitatory synapses in layer 4 arise from the thalamus. To resolve this discrepancy between structure and function, we used correlated light and electron microscopy to search individual spiny stellate cells (simple cells) for possible structural features that would explain the biophysical efficacy of the thalamic input, such as synaptic location on dendrites, size of postsynaptic densities, and postsynaptic targets. We find that thalamic axons form a small number of synapses with the spiny stellates (188 on average), that the median size of the synapses is slightly larger than that of other synapses on the dendrites of spiny stellates, that they are not located particularly proximal to the soma, and that they do not cluster on the dendrites. These findings point to alternative mechanisms, such as synchronous activation of the sparse thalamic synapses to boost the efficacy of the thalamic input. The results also support the idea that the thalamic input does not by itself determine the cortical response of spiny stellate cells, allowing the cortical microcircuit to amplify and modulate its response according to the particular context and computation being performed.
How thalamus connects to spiny stellate cells in the cat's visual cortex.
阅读:4
作者:da Costa Nuno Maçarico, Martin Kevan A C
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2011 | 起止号: | 2011 Feb 23; 31(8):2925-37 |
| doi: | 10.1523/JNEUROSCI.5961-10.2011 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
