It has been conjectured that nonlinear processing in dendritic branches endows individual neurons with the capability to perform complex computational operations that are needed to solve for example the binding problem. However, it is not clear how single neurons could acquire such functionality in a self-organized manner, because most theoretical studies of synaptic plasticity and learning concentrate on neuron models without nonlinear dendritic properties. In the meantime, a complex picture of information processing with dendritic spikes and a variety of plasticity mechanisms in single neurons has emerged from experiments. In particular, new experimental data on dendritic branch strength potentiation in rat hippocampus have not yet been incorporated into such models. In this article, we investigate how experimentally observed plasticity mechanisms, such as depolarization-dependent spike-timing-dependent plasticity and branch-strength potentiation, could be integrated to self-organize nonlinear neural computations with dendritic spikes. We provide a mathematical proof that, in a simplified setup, these plasticity mechanisms induce a competition between dendritic branches, a novel concept in the analysis of single neuron adaptivity. We show via computer simulations that such dendritic competition enables a single neuron to become member of several neuronal ensembles and to acquire nonlinear computational capabilities, such as the capability to bind multiple input features. Hence, our results suggest that nonlinear neural computation may self-organize in single neurons through the interaction of local synaptic and dendritic plasticity mechanisms.
Branch-specific plasticity enables self-organization of nonlinear computation in single neurons.
阅读:5
作者:Legenstein Robert, Maass Wolfgang
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2011 | 起止号: | 2011 Jul 27; 31(30):10787-802 |
| doi: | 10.1523/JNEUROSCI.5684-10.2011 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
