Revealing Trapped Carrier Dynamics at Buried Interfaces in Perovskite Solar Cells via Infrared-Modulated Action Spectroscopy with Surface Photovoltage Detection.

阅读:3
作者:Hu Beier, Zhang Tiankai, Li Longren, Ning Haoqing, Min Ganghong, Wang Tong, Chen Mengyun, Pan Jiaxin, Xu Niansheng, Macdonald Thomas J, Gao Feng, Levine Igal, Chen Ziming, Bakulin Artem A
Interfacial engineering is a proven strategy to enhance the efficiency of perovskite solar cells (PeSCs) by controlling surface electronic defects and carrier trapping. The trap states at the "top" interface between the perovskite and upper charge extraction layers are experimentally accessible and have been extensively studied. However, the understanding of the unexposed "bottom" surface of the perovskite layer remains elusive, due to the lack of selective and non-destructive tools to access buried interface. Here, a new spectroscopy technique is introduced that monitors nanosecond to millisecond dynamics of trapped carriers at the buried interfaces by combining optical trap activation by infrared light with surface photovoltage detection. Applied to various PeSC architectures, this method reveals that most interfacial traps reside between the perovskite and hole transport layer, suggesting a predominance of hole traps (e.g., cation and lead vacancies) over electron traps (e.g., halide vacancies) in the studied PeSC systems. The proposed new approach separates interfacial carrier-loss contributions from the top and buried surfaces, providing design insights for achieving high-performance PeSCs through interface optimization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。