Craniofacial Reconstruction Method Based on Region Fusion Strategy.

阅读:10
作者:Wen Yang, Mingquan Zhou, Pengyue Lin, Guohua Geng, Xiaoning Liu, Kang Li
Craniofacial reconstruction is to estimate a person's face model from the skull. It can be applied in many fields such as forensic medicine, archaeology, and face animation. Craniofacial reconstruction is based on the relationship between the skull and the face to reconstruct the facial appearance from the skull. However, the craniofacial structure is very complex and the relationship is not the same in different craniofacial regions. To better represent the shape changes of the skull and face and make better use of the correlation between different local regions, a new craniofacial reconstruction method based on region fusion strategy is proposed in this paper. This method has the flexibility of finding the nonlinear relationship between skull and face variables and is easy to solve. Firstly, the skull and face are divided into five corresponding local regions; secondly, the five regions of skull and face are mapped to low-dimensional latent space using Gaussian process latent variable model (GP-LVM), and the nonlinear features between skull and face are extracted; then, least square support vector regression (LSSVR) model is trained in latent space to establish the mapping relationship between skull region and face region; finally, perform regional fusion to achieve overall reconstruction. For the unknown skull, first divide the region, then project it into the latent space of the skull region, then use the trained LSSVR model to reconstruct the face of the corresponding region, and finally perform regional fusion to realize the face reconstruction of the unknown skull. The experimental results show that the method is effective. Compared with other regression methods, our method is optimal. In addition, we add attributes such as age and body mass index (BMI) to the mappings to achieve face reconstruction with different attributes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。