Accurately summarizing an outbreak using epidemiological models takes time.

阅读:4
作者:Case B K M, Young Jean-Gabriel, Hébert-Dufresne Laurent
Recent outbreaks of Mpox and Ebola, and worrying waves of COVID-19, influenza and respiratory syncytial virus, have all led to a sharp increase in the use of epidemiological models to estimate key epidemiological parameters. The feasibility of this estimation task is known as the practical identifiability (PI) problem. Here, we investigate the PI of eight commonly reported statistics of the classic susceptible-infectious-recovered model using a new measure that shows how much a researcher can expect to learn in a model-based Bayesian analysis of prevalence data. Our findings show that the basic reproductive number and final outbreak size are often poorly identified, with learning exceeding that of individual model parameters only in the early stages of an outbreak. The peak intensity, peak timing and initial growth rate are better identified, being in expectation over 20 times more probable having seen the data by the time the underlying outbreak peaks. We then test PI for a variety of true parameter combinations and find that PI is especially problematic in slow-growing or less-severe outbreaks. These results add to the growing body of literature questioning the reliability of inferences from epidemiological models when limited data are available.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。