Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF alpha ganglion cells in the mouse retina.

阅读:3
作者:Pang Ji-Jie, Gao Fan, Wu Samuel M
Bipolar cell and amacrine cell synaptic inputs to alpha ganglion cells (alphaGCs) in dark-adapted mouse retinas were studied by recording the light-evoked excitatory cation current (DeltaIC) and inhibitory chloride current (DeltaICl) under voltage-clamp conditions, and the cell morphology was revealed by Lucifer yellow fluorescence with a confocal microscope. Three types of alphaGCs were identified. (1) ONalphaGCs exhibits no spike activity in darkness, increased spikes in light, sustained inward DeltaIC, sustained outward DeltaICl of varying amplitude, and large soma (20-25 microm in diameter) with alpha-cell-like dendritic field approximately 180-350 microm stratifying near 70% of the inner plexiform layer (IPL) depth. (2) Transient OFFalphaGCs (tOFFalphaGCs) exhibit no spike activity in darkness, transient increased spikes at light offset, small sustained outward DeltaIC in light, a large transient inward DeltaIC at light offset, a sustained outward DeltaICl, and a morphology similar to the ONalphaGCs except for that their dendrites stratified near 30% of the IPL depth. (3) Sustained OFFalphaGCs exhibit maintained spike activity of 5-10 Hz in darkness, sustained decrease of spikes in light, sustained outward DeltaIC, sustained outward DeltaICl, and a morphology similar to the tOFFalphaGCs. By comparing the response thresholds and dynamic ranges of alphaGCs with those of the preganglion cells, our data suggest that the light responses of each type of alphaGCs are mediated by different sets of bipolar cells and amacrine cells. This detailed physiological analysis complements the existing anatomical results and provides new insights on the functional roles of individual synapses in the inner mammalian retina.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。