The initial size of a completely susceptible population in a group of individuals plays a key role in drawing inferences for epidemic models. However, this can be difficult to obtain in practice because, in any population, there might be individuals who may not transmit the disease during the epidemic. This short note describes how to improve the maximum likelihood estimators of the infection rate and the initial number of susceptible individuals and provides their approximate Hessian matrix for the general stochastic epidemic model by using the concept of the penalized likelihood function. The simulations of major epidemics show significant improvements in performance in averages and coverage ratios for the suggested estimator of the initial number in comparison to existing methods. We applied the proposed method to the Abakaliki smallpox data.
Improved estimation of the initial number of susceptible individuals in the general stochastic epidemic model using penalized likelihood.
阅读:3
作者:Oh, Changhyuck
| 期刊: | Scientific World Journal | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014;2014:241687 |
| doi: | 10.1155/2014/241687 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
