Typically, DNA-damaging chemotherapy (CTx) regimens have a gonadotoxic effect and cause premature ovarian insufficiency (POI), characterized by infertility and estrogen deficiency. However, whether loss of granulosa cells killed directly by CTx contributes significantly to POI has not been determined. To address this issue, we used a previously established mouse model of CTx-induced POI. The alkylating drugs Busulfan (8.75 mg/kg) and Cyclophosphamide (100 mg/kg) were administered to 8-week-old FVB female mice by intraperitoneal (IP) injection three times at 48-h intervals, after which ovarian tissues were harvested and examined by immunofluorescence. The number of primordial follicles was significantly reduced at day (d)6, whereas the number of growing follicles was relatively unchanged. CTx led to DNA double strand breaks in both oocytes and granulosa cells based on the presence of γH2AX foci. However, markers of apoptosis predominantly labeled granulosa cells in growing follicles. We next examined the effect of inhibiting apoptosis in growing granulosa cells by generating Bak-/-Baxfx/fx; Cyp19a1Cre transgenic mice. On d10 after the first CTx, Bak-/-Baxfx/fx; Cyp19a1Cre ovaries had fewer apoptotic granulosa cells and more surviving follicles than controls. Furthermore, Bak-/-Baxfx/fx; Cyp19a1Cre mice showed better fertility than controls after CTx. Our data suggest that granulosa cell death is a significant contributor to follicle depletion and fertility loss after Cyclophosphamide and Busulfan.
Granulosa cell death is a significant contributor to DNA-damaging chemotherapy-induced ovarian insufficiencyâ .
阅读:8
作者:Kawano Mahiru, McKey Jennifer, Batchvarov Iordan S, Capel Blanche
| 期刊: | Biology of Reproduction | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 May 13; 112(5):906-915 |
| doi: | 10.1093/biolre/ioae181 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
