Osteoarthritis (OA) is a degenerative joint disease characterized by the metabolic dysfunction of chondrocytes. A promising therapeutic strategy for OA involves suppressing the catabolism of the chondrocyte and promoting its anabolism to restore joint homeostasis. Here, it is demonstrated that Catalpol, a natural compound, can promote chondrocyte anabolic and proliferation, while inhibiting the catabolic activities and oxidative stress, thereby maintaining the dynamic balance of the extracellular matrix and alleviating inflammation-induced cartilage damage. Mechanistically, it has been discovered that Catalpol acts as a direct inhibitor of heat shock protein 90β (Hsp90β), and the amino acids ASP88, THR179, ASP49, and ASN46 of N-terminal domain-Hsp90β are confirmed as the binding sites for Catalpol. Knockdown of Hsp90β in primary chondrocytes demonstrates a similar biological effect as Catalpol treatment. Moreover, to develop a nanoparticle-based interventional platform for OA management, biodegradable mesoporous silica nanoparticles (bMSN) are prepared to load Catalpol (Ca-bMSN). The engineered Ca-bMSN is able to penetrate into the chondrocytes, prolong retention in the joint space, and mitigate OA progression. These findings shed light on a potential mechanism by which Catalpol modulates chondrocyte metabolism, offering a promising therapeutic strategy for OA treatment.
Inhibition of Heat Shock Protein 90β by Catalpol: A Potential Therapeutic Approach for Alleviating Inflammation-Induced Cartilage Injuries in Osteoarthritis.
阅读:4
作者:Zhou Zhenwei, Zhang Binghua, Liu Lang, Yang Jie, Wang Yuting, Lv Cheng, Zhang He, Wei Yuchi, Jiang Zhanliang, Peng Zeyu, Zhao Daqing, Leng Xiangyang, Li Xiangyan, Su Hang, Dong Haisi
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Jul;12(26):e2503909 |
| doi: | 10.1002/advs.202503909 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
