The systems for multiphoton 3D nanoprinting are rapidly increasing in print speed for larger throughput and scale, unfortunately without also improvement in resolution. Separately, the process of photoinhibition lithography has been demonstrated to enhance the resolution of multiphoton printing through the introduction of a secondary laser source. The photo-chemical dynamics and interactions for achieving photoinhibition in the various multiphoton photoinitiator systems are complex and still not well understood. Here, we examine the photoinhibition process of the common photoinitiator 7-diethylamino 3-thenoylcoumarin (DETC) with inhibition lasers near or at the multiphoton printing laser wavelength in typical low peak intensity, high repetition rate 3D nanoprinting processes. We demonstrate the clear inhibition of the polymerization process consistent with a triplet absorption deactivation mechanism for a DETC photoresist as well as show inhibition for several other photoresist systems. Additionally, we explore options to recover the photoinhibition process when printing with high intensity, low repetition rate lasers. Finally, we demonstrate photoinhibition in a projection multiphoton printing system. This investigation of photoinhibition lithography with common photoinitiators elucidates the possibility for photoinhibition occurring in many resist systems with typical high repetition rate multiphoton printing lasers as well as for high-speed projection multiphoton printing.
Photo-activated polymerization inhibition process in photoinitiator systems for high-throughput 3D nanoprinting.
阅读:3
作者:Somers Paul, Liang Zihao, Chi Teng, Johnson Jason E, Pan Liang, Boudouris Bryan W, Xu Xianfan
| 期刊: | Nanophotonics | 影响因子: | 6.600 |
| 时间: | 2023 | 起止号: | 2023 Jan 10; 12(8):1571-1580 |
| doi: | 10.1515/nanoph-2022-0611 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
