Network science can offer fundamental insights into the structural and functional properties of complex systems. For example, it is widely known that neuronal circuits tend to organize into basic functional topological modules, called network motifs. In this article, we show that network science tools can be successfully applied also to the study of artificial neural networks operating according to self-organizing (learning) principles. In particular, we study the emergence of network motifs in multi-layer perceptrons, whose initial connectivity is defined as a stack of fully-connected, bipartite graphs. Simulations show that the final network topology is shaped by learning dynamics, but can be strongly biased by choosing appropriate weight initialization schemes. Overall, our results suggest that non-trivial initialization strategies can make learning more effective by promoting the development of useful network motifs, which are often surprisingly consistent with those observed in general transduction networks.
Emergence of Network Motifs in Deep Neural Networks.
阅读:4
作者:Zambra Matteo, Maritan Amos, Testolin Alberto
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2020 | 起止号: | 2020 Feb 11; 22(2):204 |
| doi: | 10.3390/e22020204 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
