Rate-Dependent Tensile Properties of Aluminum-Hydroxide-Enhanced Ethylene Propylene Diene Monomer Coatings for Solid Rocket Motors.

阅读:7
作者:Wang Ran, Zhang Yiming, Wang Ningfei, Wu Yi
Quasi-static and dynamic tensile tests on aluminum-hydroxide-enhanced ethylene propylene diene monomer (EPDM) coatings were conducted using a universal testing machine and a Split Hopkinson Tension Bar (SHTB) over a strain rate range of 10(-3) to 10(3) s(-1). This comprehensive study explored the tensile performance of enhanced EPDM coatings in solid rocket motors. The results demonstrated a significant impact of strain rate on the mechanical properties of EPDM coatings. To capture the hyperelastic and viscoelastic characteristics of EPDM coatings at large strains, the Ogden hyperelastic model was used to replace the standard elastic component to develop an enhanced Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive model. The model parameters were fitted using a particle swarm optimization (PSO) algorithm. The improved constitutive model's predictions closely matched the experimental data, accurately capturing stress-strain responses and inflection points. It effectively predicts the tensile behavior of aluminum-hydroxide-enhanced EPDM coatings within a 20% strain range and a wide strain rate range.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。