Numb regulates the polarized delivery of cyclic nucleotide-gated ion channels in rod photoreceptor cilia

Numb 调节杆状感光纤毛中环核苷酸门控离子通道的极化传递

阅读:7
作者:Vasanth Ramamurthy, Christine Jolicoeur, Demetra Koutroumbas, Johanna Mühlhans, Yun-Zheng Le, William W Hauswirth, Andreas Giessl, Michel Cayouette

Abstract

The development and maintenance of protein compartmentalization is essential for neuronal function. A striking example is observed in light-sensing photoreceptors, in which the apical sensory cilium is subdivided into an inner and outer segment, each containing specific proteins essential for vision. It remains unclear, however, how such polarized protein localization is regulated. We report here that the endocytic adaptor protein Numb localizes to the inner, but not the outer segment of mouse photoreceptor cilia. Rod photoreceptor-specific inactivation of numb in vivo leads to progressive photoreceptor degeneration, indicating an essential role for Numb in photoreceptor cell biology. Interestingly, we report that loss of Numb in photoreceptors does not affect the localization of outer segment disk membrane proteins, such as rhodopsin, Peripherin-rds, Rom-1, and Abca4, but significantly disrupts the localization of the rod cyclic nucleotide-gated (Cng) channels, which accumulates on the inner segment plasma membrane in addition to its normal localization to the outer segments. Mechanistically, we show that Numb interacts with both subunits of the Cng channel and promotes the trafficking of Cnga1 to the recycling endosome. These results suggest a model in which Numb prevents targeting of Cng channels to the inner segment, by promoting their trafficking through the recycling endosome, where they can be sorted for specific delivery to the outer segment. This study uncovers a novel mechanism regulating polarized protein delivery in light-sensing cilia, raising the possibility that Numb plays a part in the regulation of protein trafficking in other types of cilia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。