In this paper, we present a method to adjust a stochastic logistic differential equation (SLDE) to a set of highly sparse real data. We assume that the SLDE have two unknown parameters to be estimated. We calculate the Maximum Likelihood Estimator (MLE) to estimate the intrinsic growth rate. We prove that the MLE is strongly consistent and asymptotically normal. For estimating the diffusion parameter, the quadratic variation of the data is used. We validate our method with several types of simulated data. For more realistic cases in which we observe discretizations of the solution, we use diffusion bridges and the stochastic expectation-maximization algorithm to estimate the parameters. Furthermore, when we observe only one point for each path for a given number of trajectories we were still able to estimate the parameters of the SLDE. As far as we know, this is the first attempt to fit stochastic differential equations (SDEs) to these types of data. Finally, we apply our method to real data coming from fishery. The proposed adjustment method can be applied to other examples of SDEs and is highly applicable in several areas of science, especially in situations of sparse data.
Inference for a discretized stochastic logistic differential equation and its application to biological growth.
阅读:3
作者:Delgado-Vences F, Baltazar-Larios F, Vargas A Ornelas, Morales-Bojórquez E, Cruz-Escalona V H, Salomón Aguilar C
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2022 Jan 18; 50(6):1231-1254 |
| doi: | 10.1080/02664763.2021.2024154 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
